Elementary Numerical Analysis

Elementary Numerical Analysis
Elementary Numerical Analysis by Prof. Rekha P. Kulkarni , Department of Mathematics, IIT Bombay. For more details on NPTEL visit http://nptel.iitm.ac.in
Mod-01 Lec-01 L1- Introduction
Mod-01 Lec-02 L2-Polynomial Approximation
Mod-01 Lec-03 L3-Interpolating Polynomials
Mod-01 Lec-04 L4-Properties of Divided Difference
Mod-01 Lec-05 L5-Error in the Interpolating polynomial
Mod-01 Lec-06 L6-Cubic Hermite Interpolation
Mod-01 Lec-07 L7-Piecewise Polynomial Approximation
Mod-01 Lec-08 L8-Cubic Spline Interpolation
Mod-01 Lec-09 L9-Tutorial 1
Mod-01 Lec-10 L10-Numerical Integration: Basic Rules
Mod-01 Lec-11 L11-Composite Numerical Integration
Mod-01 Lec-12 L12-Gauss 2-point Rule: Construction
Mod-01 Lec-13 Gauss 2-point Rule: Error
Mod-01 Lec-14 Convergence of Gaussian Integration
Mod-01 Lec-15 L15-Tutorial 2
Mod-01 Lec-16 L16-Numerical Differentiation
Mod-01 Lec-17 L17-Gauss Elimination
Mod-01 Lec-18 L18-L U decomposition
Mod-01 Lec-19 L19-Cholesky decomposition
Mod-01 Lec-20 L20-Gauss Elimination with partial pivoting
Mod-01 Lec-21 L21-Vector and Matrix Norms
Mod-01 Lec-22 L22-Perturbed Linear Systems
Mod-01 Lec-23 L23-Ill-conditioned Linear System
Mod-01 Lec-24 L24-Tutorial 3
Mod-01 Lec-25 L25-Effect of Small Pivots
Mod-01 Lec-26 L26-Solution of Non-linear Equations
Mod-01 Lec-27 L27-Quadratic Convergence of Newton's Method
Mod-01 Lec-28 L28-Jacobi Method
Mod-01 Lec-29 L29-Gauss-Seidel Method
Mod-01 Lec-30 L30-Tutorial 4
Mod-01 Lec-31 L31-Initial Value Problem
Mod-01 Lec-32 L32-Multi-step Methods
Mod-01 Lec-33 L33-Predictor-Corrector Formulae
Mod-01 Lec-34 L34-Boundary Value Problems
Mod-01 Lec-35 L35-Eigenvalues and Eigenvectors
Mod-01 Lec-36 L36-Spectral Theorem
Mod-01 Lec-37 L37-Power Method
Mod-01 Lec-38 L38-Inverse Power Method
Mod-01 Lec-39 L39-Q R Decomposition